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Abstract

This paper uses risk-adjusted lognormal probabilities to derive the Black-
Scholes formula and explain the factors N(d1) and N(d2). It also shows
how the one-period and multi-period binomial option pricing formulas can
be restated so that they involve analogues of N(d1) and N(d2) which have
the same interpretation as in the Black-Scholes model.

Cet article utilise les probabilités lognormaux corrigées du risque pour dériver
la formule de Black-Scholes et expliquer les facteurs N(d1) et N(d2). Il
montre aussi comment les modèles binomiaux des prix d’options d’une et de
plusieurs périodes peuvent être exprimés d’une façon telle qu’ils impliquent
des analogues de N(d1) et N(d2) qui ont la même interprétation que dans le
modèle de Black-Scholes.



1 Introduction

The Black-Scholes formula is an expression for the current value of a Euro-
pean call option on a stock which pays no dividends before expiration of the
option. The formula expresses the call value as the current stock price times
a probability factor N(d1), minus the discounted exercise payment times a
second probability factor N(d2).

Explaining N(d1) and N(d2), and in particular explaining why they are dif-
ferent from each other, usually presents some difficulties. Among the major
research papers, Black and Scholes (1973) did not explain or interpret N(d1)
andN(d2). Neither did Merton (1973, 1990 Chapter 8), Cox and Ross (1976),
or Rubinstein (1976). As for the textbooks, Jarrow and Rudd (1983) heuris-
tically derive the Black-Scholes formula using risk-adjusted probabilities, and
in the process they do interpret N(d1) and N(d2). Cox and Rubinstein (1985)
state that the stock price times N(d1) is the present value of receiving the
stock if and only if the option finishes in the money, and the discounted exer-
cise payment times N(d2) is the present value of paying the exercise price in
that event. They do not explain why this is so or relate it to the probability
that the option finishes in the money. Hull (1989) and Hull (1991) do not
explain N(d1) and N(d2), although the necessary mathematics is available
in the earlier book.

The purpose of the present paper is to explain where N(d1) and N(d2) come
from and why they are different from each other. This is done by relating
them to risk-adjusted probabilities in both the Black-Scholes and in the bi-
nomial model of Cox, Ross and Rubinstein (1979). The argument relating to
Black-Scholes expands on that of Jarrow and Rudd (1983). The comments
on the binomial model involve simple manipulations and reinterpretations of
well-known formulas.

Briefly stated, N(d2) is the risk-adjusted probability that the option will
be exercised. The interpretation of N(d1) is a bit more complicated. The
expected value, computed using risk-adjusted probabilities, of receiving the
stock at expiration of the option, contingent upon the option finishing in
the money, is N(d1) multiplied by the current stock price and the riskless
compounding factor. Thus, N(d1) is the factor by which the present value
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of contingent receipt of the stock exceeds the current stock price.

The present value of contingent receipt of the stock is not equal to but larger
than the current stock price multiplied by N(d2), the risk-adjusted proba-
bility of exercise. The reason for this is that the event of exercise is not
independent of the future stock price. If exercise were completely random
and unrelated to the stock price, then indeed the present value of contingent
receipt of the stock would be the current stock price multiplied by N(d2).
Actually the present value is larger than this, since exercise is dependent on
the future stock price and indeed happens when the stock price is high.

The organization of the paper is as follows. Section 2 states the Black-Scholes
formula. Section 3 contains the substance of the argument. It splits the payoff
to the call option into two components, shows how their future expected val-
ues (computed using the risk-adjusted probabilies) and present values involve
the probability factors N(d1) and N(d2), and explains why N(d1) is larger
than N(d2). Section 4 shows how the one-period binomial option pricing for-
mula can be restated in a form which resembles the Black-Scholes formula.
It involves analogues of N(d1) and N(d2) with similar interpretations as in
the Black-Scholes model. Section 5 does the same analysis of the multiperiod
binomial model. The rest of the paper contains the documentation to back
up the Black-Scholes model: Section 6 explains the probabilistic assump-
tions behind the model, Section 7 describes how the risk-adjustment of the
probabilities is carried out, and Section 8 uses the risk-adjusted probabilities
to derive the Black-Scholes formula by computing the present values of the
components of the call option payoff. Section 9 contains the conclusion.
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2 The Black-Scholes Formula

The Black-Scholes formula is an expression for the current value of a Euro-
pean call option on a stock which pays no dividends before expiration of the
option. The formula is

C = SN(d1)− e−rτXN(d2),

where C is the current value of the call, S is the current value of the stock, r
is the interest rate (assumed constant), τ is the remaining time to expiration
of the option, X is the exercise price, and N(d1) and N(d2) are probability
factors: N is the cumulative standard normal distribution function,

d2 = − log(X/S)− (r − 1
2
σ2)τ

σ
√
τ

,

d1 = d2 + σ
√
τ ,

and σ is a parameter measuring the volatility of the stock (interpreted more
precisely below in Section 6).

3 The Payoff and Value of the Call

To value the call option, I shall use the concept of risk-adjusted probabilities.
It turns out that one can adjust the probability distribution of the stock price
in such a way that the current value of any stock-price contingent claim
equals the expected future payoff to the claim, computed using the adjusted
probabilities, discounted at the riskless rate.

The demonstration of this involves mathematical analysis of dynamic trading
and arbitrage between the stock and the riskless asset, something I shall not
focus on here. However, the practical aspect of exactly how the probability
adjustment is performed, is described below in Section 7.

The payoff to the call option at maturity T will be

CT = max{0, ST −X} =
{

ST −X if ST ≥ X
0 otherwise
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It is useful to split this payoff into two components. The first component is
the payment of the exercise price, contingent on the option finishing in the
money. It will be referred to as “contingent exercise payment,” for short. It
is a claim with payoff

C1
T =

{ −X if ST ≥ X
0 otherwise

The second component is the receipt of the stock, again contingent on the
option finishing in the money. It will be referred to as “contingent receipt of
the stock. The payoff is

C2
T =

{
ST if ST ≥ X
0 otherwise

The various payoffs are shown in Figure 1.

We can value the option by valuing each of the two components separately.
The current value of the contingent payment of the exercise price will be
the expected future payment, computed on the basis of the risk-adjusted
probability distribution, discounted at the riskless rate. The expected future
payoff is

EC1
T = −XP{ST > X}.

where P is the risk-adjusted probability, and so the value is

−e−rτXP{ST > X}.

It turns out that the risk-adjusted probability of the event that the option
will finish in the money is P{ST > X} = N(d2). Therefore, the expected
“payoff” is −XN(d2), and the present discounted value of this payoff is

−e−rτXN(d2).

So, this is the current value of the first component of the option, the contin-
gent exercise payment.

The current value of the second component of the option, the contingent
receipt of the stock, will also equal the expected future value, computed using
the adjusted probabilities, and discounted at the riskless rate. The expected
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Figure 1: Payoff to the call and its components
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future value of this component of the payoff is not simply the conditional
expectation of the stock price given exercise. Rather, it is the conditional
expectation of the stock price given exercise times the probability of exercise,

EC2
T = E[ST |ST > X]P{ST > X}.

It turns out that this equals

E[ST |ST > X]P{ST > X} = erτSN(d1),

and so the current value is
SN(d1).

So, N(d1) is the factor by which the discounted expected value of contingent
receipt of the stock exceeds the current value of the stock.

By putting together the values of the two components of the option payoff,
we get the Black-Scholes formula:

C = SN(d1)− e−rτXN(d2).

Why is the present value of the contingent receipt of the stock not SN(d2),
corresponding to an expected future value (computed using risk-adjusted
probabilities) of erτSN(d2)?

The argument would be this. The present value of unconditionally receiving
the stock at time T is obviously equal S, the current stock value. Therefore,
the expected future value of unconditionally receiving the stock has to be
Serτ . Now if the stock is received not unconditionally but conditionally on
an event which has probability N(d2), then the expected value should be
SerτN(d2) and the present value should be SN(d2).

In fact, the present value of contingent receipt of the stock is strictly larger
than SN(d2): since d1 > d2, it must be the case that SN(d1) > SN(d2).

If the present value were equal to SN(d2), then the value of the call option
would be (S − e−rτX)N(d2). This would be negative when the option is out
of the money, which clearly cannot be the case.

The error in the argument is that the event of exercise is not independent
of the random magnitude of ST . If exercise were completely random and
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unrelated to the stock price, then indeed the present value of contingent
receipt of the stock would be SN(d2). Actually, exercise is not purely random
but depends on the future stock price: it happens only when ST is high.
Therefore, SerτN(d2) underestimates the expected value.

Indeed, the expected future value of contingent receipt of the stock is

E[ST |ST > X]P{ST > X} = E[ST |ST > X]N(d2)

> SerτN(d2)

because the correlation between ST and the exercise decision implies that

E[ST |ST > X] > Serτ .

7



4 The One-Period Binomial Model

This section shows how the one-period binomial option pricing formula can
be rewritten so as to resemble the Black-Scholes formula, and identifies the
analogues of N(d1) and N(d2).

In the binomial model, the stock price will either go up by a factor of u from
S to uS or down by a factor of d from S to dS. There is a riskless asset, for
example a riskless bond, whose price will in any case go up by a factor of
r∗ (so that r∗−1 is the riskless discount factor). To avoid a situation where
one of the assets dominates the other, it is assumed that d < r∗ < u and
that the actual probabilities of both an up movement and a down movement
in the stock price are positive (although it does not matter how large those
probabilities are).

The absence of riskless arbitrage opportunities implies that the current value
C of a call option on the stock, with exercise price X, maturing at the end
of the period, must be

C = r∗−1[pCu + (1− p)Cd],

where

p =
r∗ − d

u− d

is the risk-adjusted probability that the stock price will go up, Cu is the
future value of the option if the stock price goes up, and Cd is the future
value of the option if the stock price goes down.

Consider the case where dS < X < uS. The option will be exercised if the
stock price goes up, and it will expire worthless if the stock price goes down.
So, Cu = uS−X and Cd = 0. We can rewrite the call price formula like this:

C = r∗−1[pCu + (1− p)Cd]

= r∗−1p(uS −X)

= [r∗−1pu]S − r∗−1pX.

This formula is analogous to the Black-Scholes formula. The factor r∗−1pu
corresponds to N(d1). It equals the factor by which the discounted expected
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value of contingent receipt of the stock exceeds the current value of the stock.
The discount factor r∗−1 corresponds to the discount factor e−rτ in the Black-
Scholes model. The factor p in front of X corresponds to N(d2); it is the
risk-adjusted probability of exercise.

A warning: In the Black-Scholes model, N(d1) equals the hedge ratio, that
is, the number of stock to be included in a portfolio of stocks and bonds
which replicates the option. It is not true in the binomial model that the
analogous factor

r∗−1pu = r∗−1 r
∗ − d

u− d
u

equals the hedge ratio. In fact, in the present case where dS < X < uS, the
hedge ratio is

H =
Cu − Cd

(u− d)S
=

uS −X

(u− d)S
,

which equals the factor above only in the exceptional case where

X = r∗−1udS.

If X ≤ dS, then the option will always be exercised, so Cu = uS − X and
Cd = dS −X. The call price formula can be rewritten as

C = r∗−1[pCu + (1− p)Cd]

= r∗−1[pu+ (1− p)d]S − r∗−1X

= S − r∗−1X.

Again, the formula is analogous to the Black-Scholes formula. The risk-
adjusted probability of exercise, which corresponds to N(d2), is one. The
factor by which the discounted expected value of contingent receipt of the
stock exceeds the current value of the stock, which corresponds to N(d1), is
also one.

If uS ≤ X, then the option will never be exercised, and Cu = Cd = 0.
The current value of the call will be zero, which is again analogous with
Black-Scholes. The risk-adjusted probability of exercise, which corresponds
to N(d2), is zero. The factor by which the discounted expected value of
contingent receipt of the stock exceeds the current value of the stock, which
corresponds to N(d1), is also zero.
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5 The Multi-Period Binomial Model

This section shows that also the multi-period binomial option pricing formula
can be interpreted like the Black-Scholes formula, with factors that formally
correspond to N(d1) and N(d2) and have the same interpretation.

Let us say there are n periods. In each period, the stock price will either go
up by a factor of u or down by a factor of d, and the price of the riskless
asset will in any case go up by a factor of r∗. In every period, the actual
probability of an up movement of the stock price is positive, and so is the
probability of a down movement; but the magnitude of these probabilities is
unimportant, and they do not have to stay constant from period to period.

The absence of riskless arbitrage opportunities implies that the current value
C of a call option on the stock, with exercise price X, maturing at the end
of the period, must be

C = SΦ[a;n, p̂]−Kr∗−nΦ[a;n, p],

where a is the minimum number of upward moves necessary for the stock to
finish in the money,

p =
r∗ − d

u− d

is the risk-adjusted probability that the stock price will go up (in any one
period),

p̂ = r∗−1up,

and Φ is the complementary binomial distribution function:

Φ[a;n, p] =
n∑

j=a

(
n!

j!(n− j)!

)
pj(1− p)n−j.

The formula for C is analogous to the Black-Scholes formula. The factor
Φ[a;n, p] is the binomial risk-adjusted probability that the stock price will go
up at least a times so that the option will be exercised, and that corresponds
to N(d2). The factor Φ[a;n, p̂] can also be rewritten so as to correspond to
N(d1) in the Black-Scholes formula:

Φ[a;n, p] =
n∑

j=a

(
n!

j!(n− j)!

)
p̂j(1− p̂)n−j
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= r∗−n
n∑

j=a

(
n!

j!(n− j)!

)
pjuj(1− p)n−jdn−j.

This is the factor by which the discounted expected value of contingent re-
ceipt of the stock exceeds the current value of the stock.

6 Black-Scholes Probability Assumptions

This and the following sections do not carry the main argument any further
but rather describes the foundations of the calculations performed above in
Section 3.

In the Black-Scholes model, the stock price St at time t follows a lognormal
distribution. Specifically, given the stock price S at time zero,

log ST ∼ N(logS + (µ− σ2/2)t, σ2t),

where µ and σ2 are constant parameters.

In order to be precise about the interpretation of µ and σ2, I shall need to
make a few observations about the rate of return to the stock.

The return relative over the interval [0, t] is St/S. It is lognormally distrib-
uted. Since its logarithm is normally distributed with mean (µ− σ2/2)t and
variance σ2t, it has expectation

E
St

S
= exp

{
(µ− 1

2
σ2)t+

1

2
σ2t

}
= exp(µt).

The logarithm of the expected return relative is µt. So, the precise interpre-
tation of µ is this: it is the logarithm of the expected return relative over a
period of length one.

The continuously compounded rate of return per unit of time over the interval
[0, t] is

logSt − logS

t
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Given the current stock price S, this rate follows the normal distribution

N(µ − σ2/2, σ2/t)

Thus, the precise meaning of σ2 is this: it is the variance of the continuously
compounded rate of return over a time interval of length one. The mean of
this return is not µ but µ− σ2/2.

Note that the variance of the continuously compounded rate of return over
a time interval whose length t differs from one is not σ2 but σ2/t. The
variance depends on the length of the interval, it increases to infinity as that
length decreases to zero, and it decreases toward zero as the interval length
increases toward infinity. On the other hand, the mean of the rate of return
is independent of the length of the time interval; but it equals µ− σ2/2 and
not µ.

7 Risk-Adjusted Probabilities

Risk adjustment of the probabilities in this model consists in replacing µ
by r, the riskless interest rate. The risk-adjusted probability distribution
is such that St is still lognormally distributed, but the mean and variance
of the normally distributed variable logSt are now logS + (r − σ2/2)t and
σ2t, respectively. So, under the risk-adjusted probability distribution, the
continuously compounded rate of return to the stock over a time interval of
length one has variance σ2, as before. The logarithm of the expected return
relative over a period of length one is now r, whereas it was µ under the
original probability distribution.

The risk-adjusted probability distribution has the property that the current
value of any stock-price contingent claim equals the risklessly discounted
value of the expected future payoff, when the expected payoff is computed
using the adjusted probabilities.

This principle leads to a conceptually simple and intuitive derivation of the
Black-Scholes formula. Valuing the call option and its components is just
a matter of computing the expected value of some functions of a normally
distributed variable (the normally distributed random variable being log ST ).
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8 Computing the Call Value

The value of the European call option is its discounted expected future pay-
off, where the expected future payoff is computed using the risk-adjusted
probability, and discounting is done at the riskless rate. I shall perform this
calculation for each of the component claims separately.

To compute the value of the first component claim, define a random variable
Z by standardizing the variable log(ST/S):

Z =
log(ST/S)− (r − 1

2
σ2)τ

σ
√
τ

.

Under the risk-adjusted probabilities, Z follows a standard normal distribu-
tion. Define d2 by

d2 = − log(X/S)− (r − 1
2
σ2)τ

σ
√
τ

.

The option will be exercised if ST ≥ X, which is equivalent to Z ≥ −d2, so the
risk-adjusted probability of this event is 1−N(−d2) = N(d2). The expected
exercise payment is XN(d2), and the discounted value is exp(−rτ)XN(d2).
So that is the current value of the first component claim.

To compute the current value of the second component claim, we need the
following mathematical formula.

Formula: If S̃ is a lognormally distributed random variable such that log S̃ ∼
N(m, s2), and if X is a number, then the expectation of the truncated log-
normal variable

Ŝ =

{
S if S ≥ X
0 otherwise

is
EŜ = exp(m+ s2/2)N(s−D),

where

D =
logX −m

s
.

Proof of formula:
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EŜ =
1√
2π

∫ ∞

D
exp(sv +m) exp(−v2/2)dv

=
exp(m+ s2/2)√

2π

∫ ∞

D
exp(−(v − s)2/2)dv

=
exp(m+ s2/2)√

2π

∫ ∞

D−s
exp(−y2/2)dy

= exp(m+ s2/2)(1−N(D − s))

= exp(m+ s2/2)N(s−D).

End of proof.

Now, ST is lognormally distributed, and logST has mean

m = log S + (r − 1

2
σ2)τ

and standard deviation
s = σ

√
τ .

So,

m+
1

2
s2 = log S + rτ,

D =
logX − log S − (r − 1

2
σ2)τ

σ
√
τ

= −d2,

s−D = σ
√
τ + d2 = d1,

and the expected value of ST truncated at X is

exp(m+ s2/2)N(s−D) = exp(log S + rτ)N(d1)

= exp(rτ)SN(d1).

The present discounted value is SN(d1).
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9 Conclusion

I have used a derivation the Black-Scholes formula from the risk-adjusted
lognormal probability distribution to arrive at interpretations of the factors
N(d1) and N(d2). The first of these is the factor by which the present value
of contingent receipt of the stock, contingent on exercise, exceeds the current
value of the stock. The second factor is the risk-adjusted probability of
exercise. The one-period and multi-period binomial formulas for the option
price can be restated in such a way that they involve factors analogous to
N(d1) and N(d2). While N(d1) equals the hedge ratio in the Black-Scholes
model, the analogous factor in the binomial model is not equal to the hedge
ratio.
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