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Abstract
Options are analyzed and valued in the context of Merton’s (1987) “Simple Model of Capital Market Equilibrium with Incomplete Information”. We show now the derivation of
the partial differential equation for options in the presence of shadow qcosts of incomplete information and stochastic volatility. We illustrate our approach by specific appli-
cations and show the dependancy of the option price on information and stochastic volatility. Then, we introduce information costs in a general diffusion model for asset prices
which allows the description of stochastic volatility in an incomplete market. As in Norbert, Platen and Schweizer (1992), we show that the investor’s choice of the minimal
equivalent martingale measure is not changing, but the process of the price of the asset depends on incomplete information.

Option Pricing Under Stochastic
Volatility with Incomplete Information

1 Introduction
Volatility is an important parameter in option pricing theory. Black and
Scholes (1973)proposed an option valuation equation under the assump-
tion of a constant volatility in a complete market without frictions.
Engle (1982) developed a discrete-time model, to show that the volatility
depends on its previous values.

The stochastic volatility problem has been examined by several
authors. For example, Hull and White (1987), Wiggins (1987), Johnson
and Shanno (1987) studied the general case in which the instantaneous
variance of the stock price follows some geometric process. Scott (1989)
and Stein and Stein (1991) used an arithmetic volatility in the study of
option pricing. All these models describe (with precision) the effects of
the volatility on the options prices. Stein and Stein (1991) and Heston

(1993) proposed a dynamic approach for the volatility which is repre-
sented by an Ornstein-Ulhenbeck. It is difficult to find an analytic solu-
tion for the stochastic volatility option pricing problem.

Merton (1987) proposed a capital asset pricing model in the presence
of the shadow costs of incomplete information. Bellalah (1990) applied
the Merton (1987) model to the valuation of options under incomplete
information. Bellalah and Jacquillat (1995) and Bellalah (1999) re derived
the Black and Scholes (1973) equation in the context of Merton (1987)
model, they obtained another version of the Black and Scholes equation
within information uncertainty.

In this paper, we propose a general context for the pricing of options
under stochastic volatility and information costs.

The first section provides a general concept for the valuation of
options with shadow costs when the volatility is random. The second
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Section examines some applications to several known models. The third
section investigates a general process of a compatible asset with incom-
pleteness in the market under information uncertainty and stochastic
volatility.

2 Valuation of Options In the Presence
of a Stochastic Volatility and Shadow
Costs of Incomplete Information

2.1 The valuation model

The pricing of derivative securities in the presence of a random volatil-
ity needs the use of two processes : one for the underlying asset and
one for the volatility. Consider the following dynamics for the under-
lying asset 

dS = µSdt + σ SdW1

and the following process for the volatility 

dσ = p(S, σ, t)dt + q(S, σ, t)dW2

The two processes dW1dW2 are Brownian-motions with a correlation
coefficient ρ . The functions p(S, σ, t) and q(S, σ, t) are specified in a way
that fits the dynamics of the volatility over time. Hence, the derivative
asset price V(S, σ, t) can be expressed as a function of the dynamics of the
underlying asset price S, the volatility σ and time t. Since the volatility is
not a traded asset, a problem arises because this new source of random-
ness can not be easily hedged away. The pricing of options in this context
needs the search for two hedging contracts. The first is the underlying
asset. The second can be an option that allows a hedge against volatility
risk. Following the same logic as in the original Black-Scholes model
(1973), consider a portfolio comprising a long position in the option V , a
short position of � units of the underlying asset and a short position of
−�1 units of an other option with value V1(S, σ, t) :

	 = V − �S − �1V1 (1)

Over a short interval of time dt, applying Ito’s lemma for the functions
S, σ and t gives the change in the value of this portfolio as:
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All the sources of randomness in the portfolio value resulting from dS
can be eliminated by setting the quantity before dS equal to zero, or 

∂V

∂S
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∂V1
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= 0

and also by setting the quantity before dσ equal to zero, or 
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After eliminating the stochastic terms, the terms in dt must yield the
deterministic return as in a Black-Scholes “hedge” portfolio. Hence, the
instantaneous return on the portfolio must be the risk-free rate plus infor-
mation costs on each asset in the portfolio as in Bellalah (1999). This gives 
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Isolating the terms in V and V1 gives 
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Since the two options differ by their strikes, payoffs and maturities, this
implies that both sides of the equation are independent of the contract
type. Since both sides are functions of the independent variables S, σ and
t, we have 
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for a function δ(S, σ, t) referred to as the market price for risk or volatility
risk. This equation can also be written as 
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(2)
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This equation shows two hedge ratios ∂V
∂S and ∂V

∂σ
. The term (p − δq) is

known as the risk-neutral drift rate.

2.2 Market price of volatility risk
Suppose the investor holds only the option V which is hedged only by the
underlying asset S in the following portfolio 

	 = V − �S

Over a short interval of time dt, the change in the value of this portfolio
can be written as 
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In the standard delta-hedging, the coefficient of dS is zero and we have 
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This results from equations (1) and (2). The term dW2 represents a unit of
volatility risk. There are δ units of extra-return, given by dt for each unit
of volatility risk.

2.3 The market price of risk for traded assets

In the Black-Scholes analysis, the hedging portfolio is constructed using
the option and its underlying tradable asset. Consider the construction
of a portfolio as before using two options V and V1 with different charac-
teristics, the initial portfolio value would be 

	 = V − �1V1

Note that there are none of the underlying asset in this portfolio. Using
the same methodology as before gives the following equation 
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2
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∂S
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The variable asset S is the value of a traded asset. Then V = S must be a
solution to this last equation. Substituting V = S in the last equation
gives 

(µ − δSσ )S − (r + λS)S = 0

The market price of risk for a traded asset in the presence of information
costs 

δS = µ − (r + λS)

σ

Substituting δS in (3) gives the following equation 
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This is the Black-Scholes equation in the presence of information costs.

3 Generalization of Certain Model 
with Stochastic Volatility 
and Information Costs

3.1 Generalization of the Hull and White 1987 model
We consider the following model

dBt = (r + λB)Btdt

dSt = µ(St, σt, t)Stdt + σtStdW 1
t

dνt = γ (σt, t)νtdt + δ(σt, t)νtdW 2
t

(4)

where St denotes the stock price at time t, νt = σ 2
t its instantaneous vari-

ance, and r the riskless interest rate, which is assumed to be constant. W 1

and W 2 are Brownian motions under P, they are independent. νt has no
systematic risk. This yields a unique option price which can be computed
as the (conditional) expectation of the discounted terminal payoff under
a risk-neutral probability measure P̃. Put differently, P̃ is obtained from P
by means of a Girsanov transformation such that

dBt = (r + λB)Btdt

dSt = (r + λS)Stdt + σtStdW̃ 1
t

dνt = γ (σt, t)νtdt + δ(σt, t)νtdW̃ 2
t

(5)

under P̃, where W̃ 1, W̃ 2 are independent Brownian motions under P̃. The
risk-neutral dynamics of the bond and the underlying asset are used in
Bellalah (1999). The portfolio value would be 

	 = V − �S − �′Bt

with �′ units of the bond. When we apply the methodology of the previ-
ous section to this model, equation (2) gives:
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(6)

with W̃ 1, W̃ 2 independent Brownian motion under the probability
P̃ (ρ = 0)and λS is the information cost of the security St . The investor paid
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the shadow cost λS if he does not know the asset. Also λB is the informa-
tion cost of the bond Bt and it is equal to zero if the asset is reskless. We
suppose that δ = 0, The option price is then given by

V(t, St) = Ẽ

[
Bt

BT
(ST − K)+|Ft

]
= e−(r+λB )(T−t) Ẽ[(ST − K)+|Ft ] (7)

To obtain a more specific form for V , we use the additional assumption
contained in (5) and the independence of W 1 , W 2 that the instanta-
neous variance ν is not influenced by the stock price S. Setting

ν t,T = 1

T − t

∫ T

t
νsds (8)

They show that the conditional distribution of ST

St
under P̃, given ν t,T , is log-

normal with parameters (r + λB)(T − t) and νT−t . This allows to write V as
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2
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where VBS denotes the usual Black-Scholes (1973) price corresponding to
the variance ν t,T and F is the conditional distribution under
P̃ of ν t,T given St and σ 2

t . This is equivalent to write :
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When µ = 0 and as in H and White (1987) we have:
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avec k = ξ 2(T − t), N′(x) = 1√
2π

e− x2

2 .

3.2 Generalization of Wiggins’s model 

Under the assumption of the continuous trading, without frictions, in a
complete market, Wiggins (1987) use the following dynamics for the
asset and the volatility:

dSt = µ(St, σt, t)Stdt + σtStdWSt

dσt = f (σt)dt + θσtdWσt

(12)

with dWSt
, dWσt

are processes of Wiener, the correlation coefficient
between stock returns and volatility movements is ρdt = dWSt

dWσt
and

(dP/P)(dSt/St) = 0. The instantaneous rate of return on the hedge port-
folio P is

dP/P = wdV/V + (1 − w)dSt/St

with w the fraction invested in the contingent claim V and (1 − w) the
fraction invested in the stock S. Equation (2) is equivalent in this case to:
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As in Wiggins (1987), we can write the following equation 
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(14)

We conclude that the market price of risk affects the term given by
Wiggins (1987)�(.) = (µP − r − λP)/σP . This term is the expected excess
return per unit risk, or the market price of risk, for the hedge portfolio. It
represents the return-to-risk tradeoff required by investors for bearing
the volatility risk of the stock. 

�(.) = δσt − (µ − r − λS)ρ

σt

√
(1 − ρ2)

(15)

The market price of risk depends on the information cost of the stock and
the stochastic volatility.

3.3 Generalization of Stein and Stein’s model
In this model, the stock price dynamics are given by the following
process:

dSt = µ(St, σt, t)Stdt + σtStdW1

The volatility follows an Ornstein-Uhlenbeck process:

dσt = �(σt − θ)dt + kdW2

The Weiner processes dW1, dW2 are uncorrelated. When equation (2) is
applied in this context, we have:
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(16)
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When δ = 0 or to be a constant, equation (16) has a solution with the
same form as in Stein and Stein (1991). The solution depends on informa-
tion costs of V and the underlying asset S. The option price has the fol-
lowing form:

V = e−(r+λV )

∫ ∞

St=K
[St − K]H(St, t | �, r + λSt

, k, θ)dSt (17)

with H(St, t) is the price distribution of the underlying asset at the time t
with a non-zero drift of St .

3.4 Generalization of Heston’s model
The underlying asset and the volatility follow the diffusion process:

dSt = µ(St, σt, t)Stdt + √
νtStdW 1

t

dνt = κ(θ − νt)dt + σt
√
νtdW 2

t

(18)

with ρ the correlation coefficient between dW 1
t , dW 2

t .
In this case, the value of any option V(St, νt, t) must satisfy the follow-

ing partial differential equation 
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∂νt
− (r + λV )V = 0

(19)

Under the same assumption as in Heston (1993), it is possible to obtain
solution to equation (19). This solution depends on information costs λS .
In fact, an European call with a strike price K and maturing at time T, sat-
isfies the equation (19) subject to the following boundary conditions 

V(S, νt, t) = Max(o, S − K)

V(0, νt, t) = 0

∂V

∂St
(∞, νt, t) = 1
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V(S,∞, t) = S

By analogy with the Black et Scholes (1973) formula, Heston (1993) gives a
solution of the form 

V(S, νt, t) = SP1 − KP(t, T)P2 (20)

with P(t, t + τ ) = e−(r+λS )τ the price at time t of a unit discount bond that
matures at time t + τ . The first term of the right side of the solution
V(S, νt, t) is the present value of the underlying asset upon optimal exer-
cise. The second term is the present value of the strike-price. Both of
these terms must satisfy the equation. It is convenient to write them in
terms of the logarithm, (19)x = ln(S). By substitution of the solution in

equation (19), (20)P1 and P2 must satisfy the following equation:
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√
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for j = 1, 2 where u1 = 1/2, u2 = −1/2, a = κθ , b1 = (κ − ρσt)
√
νt + δσt ,

b2 = κ
√
νt + δσt

Following the same resolution method in Heston (1993) for the equa-
tion (21), we obtain the solution of the characteristic function:

fj(x, νt, t; φ) = exp[C(T − t; φ) + D(T − t; φ)νt + ixφ] (22)

when
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√
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By inverting the characteristic functions fj , we obtain the desired
probabilities:
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2
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π
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0
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with fj(x, νt, T; φ) = eiφx .

3.5 Generalization of Johnson and Shanno’s model

We consider the following model:

dSt = µSt
Stdt + σtS

α
t dW 1

t

dσt = µσt
σtdt + σtσσt

dW 2
t

(24)

with dW 1
t dW 2

t = ρdt.
When equation (2) is applied to the model, we obtain:
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Johnson and Shanno (1987), suppose that the risk premium of the volatil-
ity is zero. Consequently, we have:

δ = µσt

σσt
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3.6 A general Markovian model with shadow costs of
incomplete information
In this subsection we present a general model in which we include infor-
mation cost and volatilities stochastic. We consider the following multi-
dimensional diffusion process:

dXi
t = ai(t, Xt)dt +

n∑
j=1

bij(t, Xt)W
j
t (26)

for i = 1, . . . ,m, where 

ai, bij : [0, T] × R
m+1 → R

are measurable functions. The process W = (W 1, . . . ,W n) is an n-dimen-
sional Brownian motion on a probability space (�,F , Q ), and
F = (Ft)0≤t≤T is the Q-augmentation of the filtration generated by W. We
assume that the coefficients ai, bij satisfy appropriate growth and Lip-
schitz conditions so that the solution of (26) is a Markov process. We also
remark that under suitable continuity and nondegeneracy conditions on
the coefficients, F coincides with the natural filtration FX of X. This
model will be interpreted in the following way. The component X0

describes the risk less asset; setting B := X0 , we shall take b0j ≡ 0 for
j = 1, . . . , n and a0(t, x) = (r(t, Xt) + λB)x0 , so 

dBt = (r(t, Xt) + λB)Btdt (27)

We assume that ∫ T

0
|r(s, Xs) + λX |ds ≤ L < ∞ Q − a.s. (28)

for some L > 0 and X = (B, X1, . . . Xm). According to the analysis of
Merton (1987),we assume that λX = λ(s, Xs) is measured in units of
expected return.  We shall work with only one stock. The component X1

describes its price process and is denoted by S. The other components of X
can then be used to model the additional structure of the market in
which S is embedded. In this general framework, an option or contingent
claim will be a random variable of the form g(XT). The classical example
is provided by European call option with strike price K which corre-
sponds to the claim (ST − K)+ . Since the process X will usually contain
more components than just the bond B = X0 and the stock price S = X1,
claim can depend on many things other than just the terminal stock
price ST . In fact, the only serious restriction is that the underling process
X (but not necessarily S) should be Markovian. This implies that (subject
to some integrability conditions) we can associate to any contingent
claim g(XT) an option pricing function

V : [0, T] × R
m+1 → R

defined by 

V(t, x) = EQ

[
exp

(
−
∫ T

t
r(s, Xs) + λXds

)
g(Xt,x

T )

]
(29)

where (Xt,x
s )t≤s≤T denotes the solution of (26) starting from x at time t, i.e.,

with Xt,x
t = x ∈ R

m+1 . To illustrate the previous analysis, we give the fol-
lowing example:

dBt = (r(t, Xt) + λB)Btdt

dSt = (r(t, Xt) + λS)Stdt + σtStdW 1
t

dσt = −q(σt − ςt)dt + pσtdW 2
t

dςt = 1

α
(σt − ςt)dt

(30)

with p > 0, q > 0, α > 0 and dW 1
t , dW 2

t are independent Brownian
motion under the probability Q . The processes of σ, ςare respectively the
instantaneous and weighted average volatility of the stock. The equation
for σ shows that the instantaneous volatility σt is distributed by some
external noise (with an intensity p) and at the same time continuously
pulled back toward the average volatility ςt . The parameter q measures
the strength of this restoring force or speed of adjustment. The equation
(2) becomes in this case as follows

∂V

∂ t
+ 1

2
σtS

2
t

∂2V

∂S2
t

+ ρσ 2pSt
∂2V

∂S∂σt
+ p2σ 2

t

1

2

∂2V

∂σ 2
t

+ (r + λS)St
∂V

∂St

+ (−q(σt − ςt) − δpσt)
∂V

∂σt
+ (r + λB)Bt

∂V

∂Bt
+ 1

α
(σt − ςt)

∂V

∂ςt

− (r + λV )V = 0

(31)

Or 

∂V

∂ςt
= ∂V

∂σt

∂σt

∂ςt

The equation (31) becomes

∂V

∂ t
+ 1

2
σtS

2
t

∂2V

∂S2
t

+ ρσ 2pSt
∂2V

∂S∂σt
+ p2σ 2

t

1

2

∂2V

∂σ 2
t

+ (r + λS)St
∂V

∂St

+ (−q(σt − ςt) − δpσt + 1

α
(σt − ςt)

∂σt

∂ςt
)
∂V

∂σt
+ (r + λB)Bt

∂V

∂Bt

− (r + λV )V = 0

(32)

This equation can be written as follows:

∂V

∂ t
+ 1

2
σtS

2
t

∂2V

∂S2
t

+ ρσ 2pSt
∂2V

∂S∂σt
+ p2σ 2

t

1

2

∂2V

∂σ 2
t

+ (r + λS)St
∂V

∂St

+
[(

1

α

∂σt

∂ςt
− q

)
(σt − ςt) − δpσt

]
∂V

∂σt
+ (r + λB)Bt

∂V

∂Bt

− (r + λV )V = 0

(33)

with λB, λS and λV indicate the information costs respectively for the
bond, the stock and the option.
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4 The Incomplete Market and the
Minimal Equivalent Martingale Measure
with Information Costs
We shall work with a model considerably more general than. It contains
one risk less asset B and m risky assets (26)Si, i = 1, . . . ,m. The bond
price B and the stock prices Si are given by the stochastic differential
equation 

dBt = (r + λB)Btdt

dSi
t = µi

tS
i
tdt + Si

t

n∑
j=1

σ
i,j
t dW j

t

(34)

Here, W = (W 1, . . . ,W n)∗ is an n-dimensional Brownian motion on a
probability space (�,F , P) and F = (Ft)0≤t≤T denotes the P-augmentation
of the filtration generated by W. We take n ≥ m so that there are at least
as many sources of uncertainty as there are stocks available for trading.
All processes will be defined on [0, T], where the constant T > 0 denotes
the terminal time for our problem. We assume that the interest rate
r = (rt)0≤t≤T , the vector µ = (µt)0≤t≤T = (µ1

t , . . . , µ
m
t )0≤t≤T of stock appre-

ciation rates, the volatility matrix σ = (σt)0≤t≤T = (σ
ij
t )0≤t≤T,i=1,...,n,j=1,...,m

and the vector (λX)0≤t≤T = (λB, λS1 .., λSm )0≤t≤T of the assets’information
costs , are progressively measurable with respect to F. The interest rate
r and λX satisfies ∫ T

0
|ru + λX |du ≤ L < ∞ P − a.s. for some L > 0

This implies that the bond price process B is bounded above and away
from 0, uniformly in t and ω. We also assume that the matrix σt has full
rank m for every t so that the matrix (σtσ

∗
t )

−1is well defined. This means
that the basic assets, namely the stock prices, have been chosen in such a
way that they are all nonredundant. Consider a “small investor”, i.e. , an
economic agent whose actions do not influence prices, who trades in the
stocks and the bond. His trading strategy can be described at any time t
by his total wealth Vt and by the amounts π i

t invested in the ith stock for
i = 1, . . . ,m. The amount invested in the bond is then given by
Vt −∑m

i=1 π
i
t . We shall call π = (πt)0≤t≤T = (π 1

t , . . . , π
m
t )

∗
0≤t≤T a portfolio

process if π is progressively measurable with respect to F and satisfies

∫ T

0
||σ ∗

u πu||2du < ∞ P − a.s.

and ∫ T

0
|π ∗

u (µu − ru1 − λS|du < ∞ P − a.s

where 1 = (1, . . . , 1)∗ ∈ R
m and λS = (λS1 , . . . , λSm ) the vector of shadow

costs of the risky assets. The trading strategy is called self-financing if all
changes in the wealth process are entirely due to gains or losses from trad-
ing in the stocks and bond. For such a strategy, we denote two predictable

processes in Rm+1 the first is (ηt)0≤t≤T the quantity of the riskless asset or
the bond and the second one is ξt = (ξ 1

t , . . . , ξ
m
t )0≤t≤T the quantity of the

risky assets hold in such portfolio. the wealth process V must satisfy the
following equation:

dVt = ηtdBt +
m∑

i=1

ξ i
t dSi

t (35)

Substituting equation (34) in equation (35) and setting π i
t = ξ i

t Si
t we have:

dVt =
m∑

i=1

π i
t

(
µi

tdt +
n∑

j=1

σ
i,j
t dW j

t

)

+ (Vt −
m∑

i=1

π i
t )(rt + λB)dt

(36)

⇐⇒
dVt =

m∑
i=1

π i
t

(
µi

tdt +
n∑

j=1

σ
i,j
t dW j

t

)

+ Vt(rt + λV ) −
m∑

i=1

π i
t (rt + λi)dt

With no arbitrage, we have:

dVt =
m∑

i=1

π i
t (µ

i
t − rt − λi)dt +

m∑
i=1

π i
t

n∑
j=1

σ
i,j
t dW j

t + Vt(rt + λV )dt

With λV is the vector of information costs (λB, λ1, . . . , λm)because the
value of the option is equal to the value of the portfolio in this strategy.
Equation (36) is equal to:

dVt =
(
π ∗

t [µt − rt1 − λS ] + (rt + λV )Vt

)
dt

+ π ∗
t σtdWt, 0 ≤ t ≤ T

(37)

The discounted wealth process V ′ = V/B is then given by 

dV ′
t = π ′∗

t [µt − rt1 − λS ]dt + V ′
t(λV − λB1) + π ′∗

t σtdWt (38)
⇐⇒

dV ′
t = π ′∗

t [µt − rt1 − λS ]dt + V ′
t(λS − λB1) + π ′∗

t σtdWt (39)

with π ′∗
t = π ∗

t /Bt . Thus, any portfolio, process π uniquely determines a
wealth process V such that π and V together constitute a self-financing
strategy. We remark that the process give by the equation (37) depend
on the vector of the shadow costs λS [because that the value of the
market price depend on λS ] and on λB . If we interpret the process V as
the price of some assets, we can remind the definition of any “general”
asset:

Definition: A general asset is any asset whose value A is a semi martin-
gale with respect to P and F.



^

Wilmott magazine 57

Remark: For the following study, the general asset A has the following
form 

dAt = υ∗
t dWt + dFt 0 ≤ t ≤ T (40)

with F un F -adapted process with paths of finite variation and the
process υ = (υ1, . . . , υn)∗ is progressively measurable with respect to F
and satisfies: ∫ T

0
||υu||2du < ∞ P − a.s.

We recall also the concept of an equivalent martingale for S:

Definition 1: A probability measure P̃ on (�,F ) is called equivalent
martingale measure for S if 

i)- P̃ and P have the same null sets, P̃ ≈ P. In particular, this implies
P̃ = P on F0.

ii)- The discounted price process S′ = S/B is a vector martingale under P̃.

Definition 2: An equivalent martingale measure P̂ for S is called mini-
mal if any local P-martingale, orthogonal to Si, i = 1, . . . ,m 0remains a
local martingale under P̂.

We begin by describing more precisely the equivalent martingale
measures for S. If P̃ is any equivalent martingale measure for S and 

Z̃t = EP

[
dP̃

dP

∣∣∣∣Ft

]
= dP̃

dP

∣∣∣∣
Ft

, 0 ≤ t ≤ T (4.5)

denotes a continuous version of the density process of P̃ with respect to P,
then Z̃ can be written as 

Z̃t = exp

(
−
∫ t

0
γ̃ ∗

u dWu − 1

2

∫ t

0
||γ̃u||2du

)
, 0 ≤ t ≤ T (41)

where γ̃ = (γ̃ 1, . . . , γ̃ n)∗ is adapted to F and satisfies the following
condition ∫ T

0
||γ̃u||2du < ∞ P − a.s. (42)

and

σt γ̃t = [µt − rt1 − λS ], 0 ≤ t ≤ T (43)

if we suppose the existence and the uniqueness of the minimal equiva-
lent martingale measure1 P̂, we have 

γ̂t = σ ∗
t (σtσ

∗
t )

−1[µt − rt1 − λS ], 0 ≤ t ≤ T (44)

If γ̃ ∈ L2
a [0, T] satisfies (44), then γ̃ can be written as2

γ̃ = γ̂ + ϑ for some ϑ ∈ K(σ )

Indeed, decomposing γ̃ as γ̃ = ϑ + σ ∗π with ϑ ∈ K(σ )yields by (43)

[µt − (rt + λB)1] = σ γ̃ = σσ ∗π

Then the equation (43) becomes

γ̃ = ϑ + σ ∗(σ σ ∗)−1[µt − rt1 − λS ]

This allows us to prove the following result.

Lemma: Every compatible asset has a value process A of the form 

dAt =
(
π ∗

t [µt − rt1 − λπ ∗ ] + (rt + λA)At

)
dt

+ π ∗
t σtdWt + ν∗

t dWt + ν∗
t ϑtdt

(45)

for some portfolio process π and some process ν, ϑ ∈ K(σ ).

proof: Let A and his equivalent A′ a continuous processes. P̃ an
equivalent martingale measure for S such that A′ is a local P̃-martingale.
Then A′P̃ is a local P-martingale and therefore continuous, since F is a
Brownian filtration. We denote by γ̃ the process corresponding to P̃ by
the relation (42). Under P, A′ = A/B has the form:

dA′
t = 1

Bt
dFt − A′

t [rt + λB ]dt + υ∗
t

Bt
dWt

where we have used equation. If we decompose (39)υ ∈ L2
a [0, T] as:

υ = ν + σ ∗
t π with ν ∈ K(σ )

then applying Girsanov’s theorem to W shows that A′ can be written
under P̃ as 

dA′
t = 1

Bt
dFt −

(
A′

t [rt + λB ] + υ∗
t

Bt
γ̃t

)
dt + υ∗

t

Bt
dW̃t

for some P̃-Brownian motion W̃t .
Since A′ is a continuous local P̃-martingale, by substitution of

γ̃ = γ̂ + ϑ and using equation (44) in the previous equation we obtain:

dFt =
(

At [rt + λA ] + υ∗
t γ̃t

)
dt

=
(

At [rt + λAt
] + (ν∗

t + π ∗
t σt)(γ̂t + ϑt)

)
dt

=
(

At [rt + λAt
] + ν∗

t γ̂t + ν∗
t ϑt + π ∗

t [µt − rt1 − λπ ∗ ]

)
dt

with F un F-adapted process with paths of finite variation.
This equation confirm that the process of a general asset defined in

equation is equivalent to the process defined in equation (45). 

5 Conclusion
This paper developes a general context for the valuation of options with
stochastic volatility and information costs. The shadow costs are integrat-
ed in the investor’s portfolio wealth process in the same vein as in
Merton (1987), Bellalah and Jacquillat (1995) and Bellalah (1999). The
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information costs appear naturally in the derivation proposed in this
analysis. There is also another reformulation of the compatible asset’s
process, that gives more information for the drift term, which depends
on information costs. In the same way, several extensions of existing
models can be used for the development of the option valuation with sto-
chastic volatility and information costs.

1see Norbert, Platen and Schweizer[1992] (page 162, 163)
2see Norbert, Platen and Schweizer[1992] (page 165)
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